SOLUTION TO THE PROBLEM OF TRANSIENT ASYMMETRIC
HEAT CONDUCTION IN A TWO-LAYER HOLLOW CYLINDER
OF FINITE LENGTH

R. P. Shperling UDC 536.24.01

The problem is solved by the method of finite integral transformations with asymmetric initial
and boundary conditions, when heat is generated,

We consider the problem of determining the temperature distribution in a two-layer hollow cylinder
of finite length with an arbitrary mode of heat generation both inside the volume of the cylinders and at their

interface, with power densities
Q:{ Q, at r€(rq ) 0<9<2n, 0<<z<l, >0,
| S vat r=r, 002, 02!, t>0
(i=1; 2.
The solution to this problem must satisfy the equation

a?——a;;i = AT, + QT re(rin r)y 0o on, 0<<z<Cl, £2>0, (1)

where

@ 1 0 1 & & 5 cp
=t — =+ — - —, aj = L~ = const,
ar? r or 2 g 02 ;
the initial condition and the boundary conditions
T, 9 2 0)=f(r 9 2),
T, 2
—L o, [T, —Y;(p, 2, )] =0 at r=ry
li/s
' 0,if i=1
=—h, a,=h, j=1{ : 3)
% v &= {2,ifi:2,
T ¢ 2 =T ¢+ 2n 21, )

o _ in(r, o f)at 2=0,
62 ki (5)

Ti = Xi+2(rv G t} at z=1,
also the contiguity conditions

aT orT
Tl_T2,k1—5—-1——k.2—é;’~:S at r=r {6)
Functions Xj and Xj+, must satisfy the contiguity conditions
0 G,
Xge1 = Ygsz ky )gl:l =k, “‘-‘"xg:z at r=r (g=0; 2). 7

As is well known, finite integral transformations are applied to independent variables within finite
intervals, The variables r, ¢, z in this problem can be eliminated by a finite integral transformation
which will help to reduce the problem to a boundary-value problem for an ordinary differential equation,
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According to the general theory of finite integral transformations, the transform kernel will be eigenfunc-
tions of the corresponding Sturm —Liouville problem:
Ronptryeoso z{4,,,cosngp - B, ,sinnag), 8)
where , .
Rinp (1) :M at rélr,_y, ril, {9
vi,n (mi,mnprl)

Ui,n (mi,mnpr) = {N’; (mi,mnp’}j + ﬁiNn ((oi,mnprj)] “{n ((oi,mnpr)

- ['];‘ (mi,mnprj) + ﬁi'ln (mi,mnpri)] Nn (")i,mnpr)v (10)
Bi = —ai ’
(’)i,mnp

Jyn and Np are Bessel functions and Neumann functions of the n-th order,
f-')z?,mnp = -flkﬁ' }\-rznnp -— ng at _f€ ricws £
i
_n(l 4 2m) ()
" A '
Amnp are roots of the transcendental equation
Ui'n (ml,mnprl) Uj’g'n, (mz,mnp'rl)

=£

k@ o)
1¥1,mnp 272, mnp Y
’ Ul,n ((ol,mnp rl) ? Uz,n (mz,mnprt)

(12)
and Amnp» Bmnp are integration constants, The prime sign indicates a derivative with respect to
(wi, mnp?). Functions Rp,nn(r) with the weight factor r,are orthogonal on the interval {ry, ry]:

f2

§ R Reunggllr =0, i 1Py, (13)

fa

where p=¢jpj, *€[riy, Tjl, * 21y, 0 <@ =27, 0 <z=].

Concerning any function Vn(Ax) which satisfies the Begsel equation, the square of its norm on the
interval [a, bl is calculated as
B

X1y, 2 nt 2 b
5xVﬁ (s = = {[vn o) + 11 — o ] V2 (xx)}\ : (14

la

a

Using this formula and (12), we obtain

Hy + %, —
2 1 2 2 2
201,n ((’)l,mnprl) \ & 2,mnp /

” Rmnp”2 =

’ 2
ry (Ulvn (ml,mnprl)lz { ki ﬁ)?,mnp )

- 2,2 4 2
2 m?.mnp Tgl T 0, mnp Ui n (miﬂ'ml‘rl)

2 2%, ,
+E[W’f (1_~ni— ) e : <n2~h%r?—w%mr;)}, (15)

=1

Ay = Oy Ry == — 00

The transformation formulas are found by expanding the functions into series in terms of the ortho-
gonal functions in the respective Sturm ~Liouville problem, with the aid of (13) and (15), congidering the
orthogonality of trigonometric functions, we obtain

w e 9 B B
T:V‘EE ——— R r)cosc, 2[T. ., . COS A T in , 16
mH=0 n=0 p=1 Snﬂl”Rmnp“z mnp( ) " [ TR ® * m,.n.—l,ps nq>] ( )

where the summation applies to the roots of Eq. (12):

ra2m !¢

Toop® = V| § ruTW,,, drdede,
r 00

cosng, if ¥=2n, (17)
sinpg, iff y=2n—1, (n=0,1,2,...)

. ={ 2a n=0,

” 1 at ns=0.

K, (@) ={
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We now define the finite integral transformation by expression (17) with the weight factor ry, where

W onwp = Ropnp () €08 0,.2K, () (18)
is the transform kernel,
Equations (1) can be written as
o}
ot B r or or r* d(p o9 dz \ 0z By

r€(ry ty), r=r, 0 p < 2m, 0<z<<l, t>0.

We multiply each term in the differential equation (19) by the transform kernel (18) with the weight
factor ru, then integrate with respect to r from r; to r,, with respect to ¢ from 0 to 27, and with respect
to z from 0 to I, whereupon we change the order of differentiation and integration on the left-hand side,
which will finally yield

— rp 2w [
T 0 or
vp 5 Y P> ( rk e )medrdcpdz
) 0 0
s 2w 1 1 5 aT s
oT
+§ X j_r__ $< = )Wmvpdrdcpduﬁ Y e (k—g—)medrdcpdz—]—Qmw(t), (20)
r, 00
where
re 2 1
Qreyp () = H {?rQmedrdcpdz. @1
a0 0

In the first integral on the right-hand side of (20) we next divide the interval of integration with re-
spect to r into segments [r;, ry] and [ry, r;], whereupon with the aid of (18) and (9) we obfain

rs

il l i . k ‘g
9 ar |
§ K0 | 3
S S‘ 5‘ r (rk o ) W’"Wdrdq’dz -Y €08 Om?® {.S‘ v((\o) [ . Yin ((’Ji,mnp . or
Iy é a 5 . b )
X (r a;;i jvi’n(mi,m,lpf) dr ] dcp} dz. 2
Twice integrating by parts over the intervals inside the brackets will yield
2 r a
2_._._]3—‘—-——-— J (r aTz ) U,‘n(mi mnpr)dt':fl [kl w_%M]
=l Uiﬂ; (wi,mnprl) or dr ) ’ 3 o L
[

— ArOin Ormngts) [am”"” D20 4Ty 9 t)]+ ol s,n (O2,mn"s) [‘”" 0 @20 0T g 2 t)J

vl,n (ml,mnp‘yl) ar 02,71((’)2,71171;;"1) a"’ »
v (")1 mnprl) U2, n( 2 mnp 1)
—r 1k A Thmrp X e, 2, D— ke Do’ 2R T (r 2,
rl[ 198, mep U1,n ((Dl.mnpfl) 100 @ X FHmnp Uy ((1)2 mnp r1) e @, )
2
. : s r
- f S [rdvg,n ((I)i,mnp )] dr, 23)
i=1 Ui,n (“)i,mnprl) b dr
i-1

where

wi,mnpv;f'n(mi,mnpri)

Q; = —

vi,n ((’)i,mnprj) '
Taking into consideration (3), (6), (12), and that functions vj,n satisfy the Bessel equations, we find
that expression (23) is equal to

2 43 rz

k? k 24

Prunp (@ 2, f)= ——-l—ﬂ——)_— .S‘ T 0in (wi'm"pr) dr +n’ S‘T TRmnpdr, &9
o U0 (@4, mnplt . b4

i1
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k h ifi%isn ((’)t,mnp )

2
Vs @ 2 ) =S+ 9 (25)
: = 1,n (mz,mnprl)
Inserting expression (24) into (22) yields
o ry2m 1 Ty ox
5‘ S‘ g ar ( ) W oy pirdedz = n25 g S‘”Twmvpdrdq’dz + Wy O — )‘ k0% mnp j‘ j‘SrT W mypdrdede, (26)
ro 90 =1 ri.g)
2n !
¥,p &) = 65. s‘ PYranp (@ 2, 1) 08 0,,2K, (¢) dpdz. (27)
D

We treat the second and the third integral on the right-hand side of Eq, (20) analogously, i.e., we
divide the integration interval into [r(, r;] and [ry, r,], then twice integrate by parts the second integral
with respect to z and the third integral with respect to ¢, which with (5) yields

]

5 S 5— : 5@_ b )mepdrdcpdz=——n2 5 5 Y W, drdydz, (28)

rz 2t L P aT o ry2m 1 ‘
5‘55‘ . (k————a )Wmvpdrdtpdz = vap(t) - E kidfn g‘ g‘ s’rTiWi,m.ipdrd(pdz, (29)

700 =t yid o
where
Xuyp () = | Of PR, @, 8) Ry () K, (@) drde, (30)
1

X(f, @, t) = TXL (r» @, t) + (_I)mamxi+2 (f, @, t)’ f€ [ri-—l' ri]' (31)

Inserting the values of (26), (28), and (29) into (20), with (11) taken into consideration, we obtain an
ordinary first-order differential equation in the transform variables:

T ot =
Aot 4z Tl = Dy O 82)
where
q)mvp (t) = _lmep (f) + Xm'pp (t) + vap (t)' (33)
The solution to Eq. (32) is
' ¢
Tppyp () = exp (—?»m,,p)[Dmvp + S‘ exp ( Anp ) @, (T dt ] . (34)

The integration constant Dmyp is determined from the initial condition (2), which becomes within

the range of the transform variables
rs 2m &

mvp(O) ﬁ Y rwf(r, o, 2) W, drdedz. (35)

20 0

D

myp

Thus, the final solution to the problem is series (16) with ’_I‘-myp(t) defined by expressions (34)-(35).

We will show here a few formulas of integral transformations and corresponding inverse transfor-
mations for the case of a two-layer hollow cylinder of finite length.

1. With boundary conditions of the first kind at the end surfaces
Tilimo = %o Tl 2=1 =Niss (36)

the integral transformation is performed according to

7y 2w 1

Trap @) =rg OS OSrp.TFm.'.pdrdrpdz, (37)

. ms
Fryp = Rynp(r) sino, 2K, (g), 0, = - (38)

1428



and the inverse transformation is

E V E ol HR b Rynp(r) sino,z [T:n an,p ,€os np + Tm an—1,p Sill ng). (39)
=1 n—~0 p=1 mnp
2. With boundary conditions of the second kind at the end surfaces
aT, | 1 T, 1
Mtall —— X, i =y
% |,y PR B (40)
the integral transformation is performed according to
.,241: {
T, 0= j 5 ymTmepdrd(pdz, o= (41)
re Q 6
and the inverse transformation is
Y \Y
T = \ L z e ﬂl”R mnp (f) €05 0,,2 [Tm 2n pcoan) Tm,zn 1,p81n nq)] . (42)
—o n=0 p=1 mnP

3. With boundary conditions of the first and the second kind at the end surfaces

T, =%, E—T"“ = L Xisor (43)
z=0 0z 2=l ki
the integral transformation is performed according to
r.z 2n 1
Toip @ = | [ [ TPy pardoce, o, = HEL20, (44)
f 80 ’
and the inverse transformation is
N\ 2 i 7 5) i
T = e Ry p (1) 80 02 | Tpgn, 5 €0S0Q -+ Ty, Si0RG)] 45
m_qﬂeg‘pé e nl“Rmnp{, p( ) [ s2n,p P m,2n-1,p (P] ( )

The summations in (39), (42), and (45) apply fo the roots of Eq. (12), Instead of condition (5) in prob-
lem (1)~(7), in these three cases we consider condition (36), (40), and(43)respectively, Similar formulas
for a homogeneous hollow cylinder of infinite length were given in 1],

NOTATION
Ty is the temperature of the i-th cylinder, (i =1, 2);
r, ¢,z are the cylindrical coordinates;
t is the time;
ait are the thermal diffusivity coefficients;
kg are the thermal conductivity coefficients;
hj are the coefficients of external heat fransfer;
l is the length of cylinder;
ry is the inside radius of inner cylinder;
Ty is the radius of interface between cylinders;
Iy is the outside radius of outer cylinder,
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